Chord Detection Using Deep Learning
نویسندگان
چکیده
In this paper, we utilize deep learning to learn high-level features for audio chord detection. The learned features, obtained by a deep network in bottleneck architecture, give promising results and outperform state-of-the-art systems. We present and evaluate the results for various methods and configurations, including input pre-processing, a bottleneck architecture, and SVMs vs. HMMs for chord classification.
منابع مشابه
Chord Label Personalization through Deep Learning of Integrated Harmonic Interval-based Representations
The increasing accuracy of automatic chord estimation systems, the availability of vast amounts of heterogeneous reference annotations, and insights from annotator subjectivity research make chord label personalization increasingly important. Nevertheless, automatic chord estimation systems are historically exclusively trained and evaluated on a single reference annotation. We introduce a first...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملA Hybrid Gaussian-HMM-Deep Learning Approach for Automatic Chord Estimation with Very Large Vocabulary
We propose a hybrid Gaussian-HMM-Deep-Learning approach for automatic chord estimation with very large chord vocabulary. The Gaussian-HMM part is similar to Chordino, which is used as a segmentation engine to divide input audio into note spectrogram segments. Two types of deep learning models are proposed to classify these segments into chord labels, which are then connected as chord sequences....
متن کاملLarge Vocabulary Automatic Chord Estimation Using Deep Neural Nets: Design Framework, System Variations and Limitations
In this paper, we propose a new system design framework for large vocabulary automatic chord estimation. Our approach is based on an integration of traditional sequence segmentation processes and deep learning chord classification techniques. We systematically explore the design space of the proposed framework for a range of parameters, namely deep neural nets, network configurations, input fea...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015